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Major Modules in Spark
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GraphX:
Unifying Data-Parallel and 
Graph-Parallel Analytics 
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Graphs are Central to Analytics
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Separate Systems to Support Each View
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Inefficient
Expensive data movement and duplication across 

the network and file system
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Tables and Graphs are composable 
views of the same physical data

GraphX Unified
Representation

Graph ViewTable View

Each view has its own operators that 
exploit the semantics of the view 

to achieve efficient execution
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HDFSHDFS

ComputeSpark Preprocess Spark Post.

A Small Pipeline in GraphX

Timed end-to-end GraphX is faster than GraphLab
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The GraphX API
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Property Graphs
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View a Graph as a Table
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Part. 2

Part. 1
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Table Operators

nTable (RDD) operators are inherited from Spark:

map

filter

groupBy

sort

union

join

leftOuterJoin

rightOuterJoin

reduce

count

fold

reduceByKey

groupByKey

cogroup

cross

zip

sample

take

first

partitionBy

mapWith

pipe

save

...
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Creating a Graph (Scala)
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Graph Operations (Scala)
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Graph Operations (Scala)
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Built-in Algorithms (Scala)
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The “triplets” view
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Triplets Join Vertices and Edges

nThe triplets operator joins vertices and edges:

The mapreduceTriplets operator sums adjacent triplets.
SELECT t.dstId, reduceUDF( mapUDF(t) ) AS sum 
FROM triplets AS t GROUPBY t.dstId
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F

E

Map Reduce Triplets

nMap-Reduce for each vertex
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F

E

Example: Oldest Follower

D
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CnWhat is the age of the oldest 
follower for each user?
nval oldestFollowerAge = graph
.mapreduceTriplets(
e=> (e.dst.id, 

e.src.age),//Map
(a,b)=> max(a, b) //Reduce

)
.vertices
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The subgraph transformation
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Computation w/ mapReduceTriplets
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Computation w/ aggregateMessages

The “aggregateMessages” operator: 

(1) Apply a user-defined sendMsg function to each edge triplet in the graph 
and then 
(2) Use the another user-defined mergeMsg function to aggregate those 
messages at their destination vertex.
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Example: Compute Average Age of Older Followers of 
each node using aggregateMessages

Refer to "examples/src/main/scala/org/apache/spark/examples/graphx/AggregateMessagesExample.scala” 
in Spark repo for the full source code of this example
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Have Expressed the Pregel and GraphLab 
abstractions using the GraphX operators

in less than 50 lines of code!

By composing these operators we can
construct entire graph-analytics pipelines.
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Re-implementation of the Pregel 
abstraction using the GraphX API
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Finding Connected Components 
using the GraphX variant of Pregel
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GraphX System Design
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Graph Partitioning Strategies

Edge Cut in GraphLab 1.0 vs. 
Vertex Cut in GraphLab 2.0  in PowerGraph and GraphX
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Part. 2

Part. 1
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Graph System Optimizations
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Performance Comparisons

GraphX is roughly 3x slower than GraphLab

Live-Journal: 69 Million Edges
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GraphX scales to larger graphs

GraphX is roughly 2x slower than GraphLab
» Scala + Java overhead: Lambdas, GC time, …
»No shared memory parallelism: 2x increase in comm.

Twitter Graph: 1.5 Billion Edges
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HDFSHDFS

ComputeSpark Preprocess Spark Post.

A Small Pipeline in GraphX

Timed end-to-end GraphX is faster than GraphLab
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The GraphX Stack
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GraphX: 
Summary and Observations

nDomain specific views:  Tables and Graphs
n tables and graphs are first-class composable objects
n specialized operators which exploit view semantics

nSingle system that efficiently spans the pipeline
n minimize data movement and duplication
n eliminates need to learn and manage multiple systems

nGraphs through the lens of database systems
n Graph-Parallel Pattern à Triplet joins in relational alg.
n Graph Systems à Distributed join optimizations

48
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Directions for Further Development of GraphX

nStatic Data à Dynamic Data, Time-Evolving Big Graphs
n Apply GraphX unified approach to time evolving data
n Model and analyze relationships over time
=> e.g. See the GraphTau paper in GRADES 2016.

nServing Graph Structured Data
n Allow external systems to interact with GraphX
n Unify distributed graph databases with relational database 

technology
=> Refer to the next topic: Graphframes

49



Spark Graphs 50

Summary of Apache Spark’s GraphX library
Strength

nGeneral-purpose graph 
processing library

nOptimized for fast 
distributed computing

nA rich library of 
algorithms: PageRank, 
Connected Components, 
etc

Limitations
nNo Java, Python APIs

nLower-level RDD-based 
API (vs. DataFrames) 

nCannot use recent Spark 
(SQL) optimizations: 
Catalyst query optimizer, 
Tungsten memory 
management.

See http://amplab.github.io/graphx/ for more details.

http://amplab.github.io/graphx/
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Enter GraphFrames
https://github.com/graphframes.graphframe
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Motivations for GraphFrames

Goal: Support DataFrame-based Graph processing on Spark
nSimplify Interactive Queries
nSupport Motif-finding for Structural Pattern Search
nBenefit from DataFrame Optimization

Collaborations between Databricks, UC Berkeley & MIT
nNow with open-source community contributors
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Evolution of Graph Processing Support in Spark
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Graph Algorithms  vs. Graph Queries
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Graph Algorithms  vs. Graph Queries, an Example
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Graph Algorithms  vs. Graph Queries, an Example
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Before GraphFrames:
Separate Graph Database/ Frameworks to support

Graph Algorithms and Graph Queries
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System Architecture of GraphFrames
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GraphFrames vs. GraphX
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GraphFrames API
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Representing a Graph in GraphFrames - an Example
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Saving & Loading Graphs
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Build and show a Graph in GraphFrames - an Example
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Example of Simple Queries with GraphFrames
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Motif Finding with GraphFrames
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E.G.: Study City/Flight Relationships via  Motif-Finding 
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E.G.: Determine Airport Importance via PageRank

…
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Built-in Graph Algorithms for GraphFrames
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Built-in Algorithm Implementation for GraphFrames
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GraphX compatibility for GraphFrames
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GraphFrames System Implementation
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Resources for Learning more about GraphFrames

https://www.datascience.com/blog/graph-computations-apache-spark

Another Graph Processing Framework for Spark:
Jiawei Jiang et al, “PSGraph: How Tencent trains extremely large graphs with Spark ?”,  IEEE ICDE 2020


